Bio-Synthesis provides ABT-510 peptide syntehsis, this synthetic peptide that mimics the anti-angiogenic activity of the endogenous protein thrombospondin-1 (TSP-1). The systematic name for the ABT-510 peptide is N-Acetyl-N-methylglycylglycyl-L-valyl-D-isoleucyl-L-threonyl-L-norvalyl-L-isoleucyl-N5-(diaminomethylene)-L-ornithyl-N-ethyl-L-prolinamide with the molecular formula C46H83N13O11, an average mass of 994.231689 Da, a monoisotopic mass of 993.633484 Da and the ChemSpider ID 5293759. ABT-510 is an antiangionic TSP-1 modified nonapeptide that was designed using the 7-mer active sequence GVITRIR of the second type I repeat as the target sequence. ABT-510 inhibits the formation of new blood vessels. Furthermore, ABT-510 inhibits the actions of several pro-angiogenic growth factors important to tumor neovascularization. In addition, the modified TSR peptide ABT-510 inhibits malignant glioma growth in vivo and induces apoptosis of brain microvessel endothelial cells (MvEC) propagated in vitro. ABT-510 also increases active TGF-1 levels in tumors. The term “neovascularization” describes the proliferation of blood vessels in tissue not normally containing them or the proliferation of blood vessels of a different kind than usual present in tissue. These pro-angiogenic growth factors include vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and interleukin 8 (IL-8). Thrombospondin 1 (TSP-1) is a large multifunctional glycoprotein involved in multiple biological processes including angiogenesis, apoptosis, and activation of TGF-1. ABT-510 is a TSP-1 synthetic analog that mimic its antiangiogenic action. Tumors that over express TSP-1 grow more slowly, have fewer metastases, and decreased angiogenesis. Therefore, TSP-1 provides a novel target for the treatment of cancer.
↧